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Abstract: Accurate measurements of inter-story drift responses are critical in shaking table 8 

tests. This paper compared three commonly-used approaches of inter-story drift measurement, 9 

and developed the techniques for enhanced measurement. This study proposed a novel 10 

arrangement of displacement meters along with the associated data correction method. By 11 

setting the overhanging steel arms above and beneath a floor slab at the same position, the 12 

suggested approach could remove the influence of floor slab rotation and thus improve the 13 

accuracy of inter-story drift measurement. In addition, a novel computer vision-based target 14 

tracking approach based on a super-resolution (SR) image reconstruction technique was 15 

developed. This advanced deep learning-based SR method can transform blurry, low-16 

resolution images into sharp, high-resolution ones for precise target tracking. The accuracy 17 

of these developed inter-story measurement approaches was evaluated through a case study 18 

of shaking table tests of a large-scale three-story reinforced concrete (RC) building structure. 19 

The results indicated that the novel arrangement of displacement meters and associated data 20 

correction method successfully eliminated the influence of floor slab rotation, which could 21 

result in an error of approximately 20% in the inter-story drift measurement if left uncorrected. 22 

The novel SR method overcame the limitation of video resolution and achieved a stable sub-23 
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pixel measurement result. In the case of seismic loading, the SR method improved the signal-24 

to-noise ratio of the drift measurement by 68%, and reduced the root mean square error by 25 

63%, compared with the conventional template matching technique. The modal parameters 26 

of the test structure were accurately identified from the small-magnitude displacement data 27 

of white noise vibration responses measured using the SR method. 28 

Keywords：inter-story drift measurement; shaking table test; super-resolution 29 

reconstruction; computer vision; displacement meter arrangement 30 

1 INTRODUCTION 31 

Shaking table tests are widely used to simulate the dynamic responses of building 32 

structures subjected to seismic motions [1-4]. One of the main measurements in shaking table 33 

tests is inter-story drift, which is an important indicator of structural seismic performance [5]. 34 

Currently, inter-story drifts are usually measured by displacement meters, acceleration 35 

integration, and computer vision-based methods. 36 

A displacement meter is a conventional instrument for displacement measurement that 37 

can directly measure the relative displacement between two points. As depicted in Fig. 1, 38 

there are two types of common arrangements of displacement meters for measuring inter-39 

story drifts in shaking table tests. In the first type, the displacement meters are positioned 40 

outside the shaking table and connected to a fixed platform. This arrangement requires 41 

displacement meters with a large measurement range as the movement of the shaking table 42 

is also included in the measurement. In this case, the accuracy of measuring a small 43 

magnitude response is inevitably sacrificed because of limited the resolution of large-range 44 

displacement meters. In the second type, the displacement meters are arranged inside the test 45 



3 
 

structure. Yu et al. [6] utilized displacement meters to measure the change in the diagonal 46 

distance between two columns, and to calculate inter-story drifts (Fig. 1). The diagonal 47 

displacement meter included a linear variable differential transformer (LVDT) connected to 48 

a spring wire which extended the measurement distance. However, the accuracy of the 49 

measurement was affected by the sagging of the wire. Kajiwara et al. [7] set overhanging 50 

steel arms between adjacent floors in a full-scale shaking table test structure and mounted the 51 

displacement meters within those overhanging arms (Fig. 1). While this arrangement 52 

provided a direct measurement of inter-story drifts, it can be influenced by floor slab rotation 53 

which induces the rotation of the overhanging arms. To accurately and conveniently measure 54 

the structural displacement, further research is needed to determine how to arrange the 55 

displacement meters reasonably. 56 

 

Fig. 1. Arrangement of displacement meters 

In general, accelerometers are used in shaking table tests to measure the floor 57 

acceleration responses of the test structure [8-10]. While the structural displacement can be 58 

calculated by double integrating the recorded acceleration, non-negligible low-frequency 59 

noises in acceleration measurement may lead to significant baseline drift when integrating 60 
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acceleration data [11 -13 ]. Nevertheless, the acceleration integration approach is used for 61 

displacement measurement in some shaking table tests and seismic structural health 62 

monitoring systems [14, 15], if the installation of displacement meters is difficult and costly. 63 

Baseline correction is necessary for the acceleration integration, and the commonly used 64 

methods for baseline correction include piecewise corrections to displacement, elimination 65 

of polynomial trends in velocity and displacement, and high-pass filtering [16-18]. As the 66 

baseline correction (e.g., filtering the low-frequency response data) in acceleration 67 

integration may lead to nonnegligible error in the displacement estimation particularly when 68 

the structure undergoes nonlinear responses, it is a clear need to quantify and discuss the error 69 

range of this approach. 70 

Computer vision-based measurement methods track the displacement of targets or 71 

feature points in a video to calculate the actual displacement of a structure. According to 72 

different tracking algorithms, computer vision-based measurement methods can be 73 

categorized into cross-correlation template matching [19], geometric matching [20], color 74 

matching [21 ], optical flow tracking [22 , 23 ], feature point tracking [24 ], deep learning-75 

based tracking [25 ], and others. The accuracy of vision-based measurement depends on 76 

image resolution, which is related to the camera parameters and shooting distance. In large-77 

scale shaking table tests, a long shooting distance is often necessary to ensure a full-field 78 

view of the movement of a large structure specimen, resulting in low-resolution (LR) video 79 

images. It is a challenge to accurately capture small displacements from these LR images. 80 

The recently developed super-resolution (SR) techniques provided potential to enhance the 81 

accuracy of vision-based measurement using consumer-grade cameras [26-32].  82 
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The objective of this paper is to compare the commonly-used approaches of inter-story 83 

drift measurement in shaking table tests and to develop the associated techniques for 84 

improvement of the measurement accuracy. The major contributions of this paper are 85 

threefold. Firstly, a novel arrangement of displacement meters and the associated data 86 

correction method were proposed for shaking table tests. The method can accurately measure 87 

the inter-story drifts by eliminating the influence of floor slab rotations. Secondly, a novel 88 

object tracking method based on SR image reconstruction was proposed to overcome the 89 

resolution limitation of images. The SR target tracking method realized stable sub-pixel 90 

displacement measurement by a combination of deep learning-based SR techniques and 91 

conventional cross-correlation template matching algorithms. Thirdly, shaking table tests of 92 

a large-scale three-story reinforced concrete (RC) building structure were used as a case study 93 

to validate these developed methods. The accuracy of various measurement methods was 94 

compared using the test data. 95 

This paper is organized as follows. Section 2 presents the novel arrangement of 96 

displacement meters, the associated data correction method, and the novel SR target tracking 97 

method. Section 3 describes the experimental program and instrumentation of the shaking 98 

table tests on a three-story RC structure. Section 4 presents a detailed comparison of the inter-99 

story drift measurement results of experimental tests using three different approaches. 100 

Section 5 discusses a few issues that arose in relation to the developed inter-story 101 

measurement approaches. 102 
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2 DEVELOPMENT OF INTER-STORY DRIFT MEASUREMENT APPROACHES 103 

2.1 Arrangement and data correction for displacement meter measurement 104 

Fig. 2(a) depicts a common arrangement of the displacement meters in shaking table 105 

tests [7]. An improved arrangement is proposed to eliminate the influence of floor slab 106 

rotation, as presented in Fig. 2(b). In this arrangement, the overhanging steel arms above and 107 

beneath a floor slab are placed in the same position, which ensures the rotation angles of the 108 

two steel arms are identical. This makes it possible to calculate the relative rotation angle 𝛼𝛼 109 

between the upper steel arm and the lower steel arm (Fig. 3), and thus, the original measured 110 

inter-story drift data can be corrected to remove the influence of floor slab rotations. It should 111 

be noted that the novel approach needs two displacement meters installed on a pair of steel 112 

arms, while one displacement meter would be fine for the conventional approach. This is the 113 

additional cost of the novel approach for enhancing the measurement accuracy. 114 

         

 

(a) Arrangement in Reference [7]  (b) Improved arrangement  

Fig. 2. Arrangement of steel arms and displacement meters 

steel arm

displacement 
meter
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Fig. 3. Displacement measurement correction 

The actual inter-story drift can be calculated from the displacement meter measurement 115 

results using the following equations:  116 

 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖1 + 𝐷𝐷𝑖𝑖2 + 𝐷𝐷𝑖𝑖3 (1) 

 𝐷𝐷𝑖𝑖1 = 𝜃𝜃𝑖𝑖−1𝐻𝐻𝑖𝑖 = � 𝛼𝛼𝑘𝑘𝐻𝐻𝑖𝑖
𝑖𝑖−1

𝑘𝑘=0
 (2) 

 𝐷𝐷𝑖𝑖2 = (𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑖𝑖)/2cos𝜃𝜃𝑖𝑖−1 (3) 

 𝐷𝐷𝑖𝑖3 = 𝛼𝛼𝑖𝑖𝐿𝐿𝑖𝑖 (4) 

 𝛼𝛼𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[(𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖)/ℎ𝑖𝑖] (5) 

In Eqs. (1) - (5), 𝐷𝐷𝑖𝑖𝑓𝑓 is the actual inter-story drift, namely, the corrected inter-story drift 117 

measurement; 𝐷𝐷𝑖𝑖1 is the drift caused by the rotation of the lower steel arm; 𝐷𝐷𝑖𝑖2 is the mean 118 

measured value of displacement meters, that is the original inter-story drift measurement; 𝐷𝐷𝑖𝑖3 119 

is the displacement caused by the relative rotation between the upper and lower steel arms; 120 

𝜃𝜃𝑖𝑖 is the local rotation angle of the i-th floor relative to the shaking table; 𝐻𝐻𝑖𝑖 is the height of 121 

the i-th story; 𝛼𝛼𝑖𝑖 is the relative rotation angle between the upper steel arm and the lower steel 122 

arm, in particular 𝛼𝛼0 = 0;  𝑑𝑑𝑖𝑖u is the measured value of the upper displacement meter; 𝑑𝑑𝑖𝑖l is 123 

the measured value of the lower displacement meter; 𝐿𝐿𝑖𝑖 is the distance from the upper floor 124 

slab to the centroid of two displacement meters; and ℎ𝑖𝑖  is the distance between two 125 

displacement meters. When (𝑑𝑑𝑖𝑖𝑢𝑢 − 𝑑𝑑𝑖𝑖𝑖𝑖)/ℎ𝑖𝑖 ˂ 0.4, Eq. (5) can be simplified as Eq. (6) with an 126 

error no more than 5%.  127 

𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2 𝐷𝐷𝑖𝑖3

𝐻𝐻𝑖𝑖

𝑑𝑑𝑖𝑖u

𝑑𝑑𝑖𝑖l
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 𝛼𝛼𝑖𝑖 = (𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖)/ℎ𝑖𝑖 (6) 

2.2 SR target tracking method 128 

Cross-correlation template matching is a widely employed target tracking method [33-129 

35], which can track the artificial target, apparent texture, or rigid regions of a structure. The 130 

SR technique is used to enhance tracking accuracy, which can convert blurry, LR images into 131 

sharp, SR ones, providing more refined image data by increasing the number of pixels per 132 

unit area. Depending on the reconstruction mechanism, the SR technique can be classified 133 

into four categories: interpolation [36, 37], degradation [38], machine learning [39] and deep 134 

learning [40] models. Among these, the SR technique based on deep learning is conspicuous 135 

for its superior reconstruction performance because of the powerful learning capability of 136 

neural networks [41].  137 

In this study, an advanced lightweight SR recurrent neural network (RNN) [42 ]was 138 

trained. The architecture of the lightweight SR network was developed by Li et al. [42]. As 139 

depicted in Fig. 4, the network can be unfolded to 𝑇𝑇 iterations, and the loss functions of each 140 

iteration are identical (Eq. (7)). In each iteration, two convolutional layers are used to extract 141 

shallow features of the input LR image. A feedback block (FB) is designed to receive the 142 

shallow features and handle the iteration information flows, and the remaining 143 

deconvolutional and convolutional layers are utilized to receive the output of the FB and 144 

generate a residual image 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅. The output SR image is obtained by adding the residual and 145 

the upsampled images. Because of the recurrent network architecture, the SR model can 146 

deliver great reconstruction performance by using much fewer parameters compared with 147 

other state-of-the-art models. 148 
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Fig. 4. The architecture of the SR neural network 

 𝐿𝐿(𝜃𝜃) = 1 𝑇𝑇⁄  �𝑊𝑊(𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

�𝐼𝐼𝐻𝐻𝐻𝐻
(𝑡𝑡)−𝐼𝐼𝑆𝑆𝑆𝑆

(𝑡𝑡)�
1
 (7) 

In Eq. (7), 𝜃𝜃 is the parameters of the network, 𝑡𝑡 is the iteration index,  𝑊𝑊(𝑡𝑡) is the weight 149 

factor of the output at the 𝑡𝑡-th iteration (defined as 𝑊𝑊(𝑡𝑡)=1 in this study), 𝐼𝐼𝐻𝐻𝐻𝐻
(𝑡𝑡) is the target 150 

high-resolution (HR) image, and 𝐼𝐼𝑆𝑆𝑆𝑆
(𝑡𝑡) is the output SR image at the 𝑡𝑡-th iteration, ‖∗‖1 is the 151 

L1 norm regularization. 152 

 This study optimized the network only for regions of interest (ROIs) to minimize 153 

computation cost. ROIs are the regions containing the artificial targets which need to be 154 

tracked. Images with geometric features similar to the artificial targets in the test were created 155 

with MATLAB, and pasted on different backgrounds. The dataset for the SR neural network 156 

consisted of both HR images and the corresponding LR images. The pasted images were 157 

photographed with a set size of 400×400 pixels as the HR images. The LR images were 158 
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created by downsampling the HR images to a size of 50×50 pixels. The 1/8 size ratio of HR 159 

images to LR images allowed the trained network to transform the input blurry image into an 160 

SR image which was 8 times the size larger. The LR dataset was then randomly divided into 161 

three groups, one of which group applied Gaussian noise, whereas another applied Gaussian 162 

blur, to ensure the generalizability of the network. A total of 104 HR images were taken under 163 

different backgrounds, lighting conditions, shooting angles and distances, to ensure the 164 

trained model can adapt to different situations. Among these, 83 images were randomly 165 

selected for the training dataset, and the other images were left for validation. The diversity 166 

of the datasets was enriched by random rotation and flipping, adjustment of brightness, and 167 

saturation. After the data augmentation, the training and validation datasets consisted of 996 168 

and 252 images, respectively. 169 

The image quality of SR reconstruction was assessed using three indicators: the peak 170 

signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) [43], and Pearson 171 

correlation coefficient. The PSNR and SSIM values can be calculated by Eqs. (8) - (10). For 172 

the purpose of comparison, the images were also handled using a commonly used bicubic 173 

interpolation (BI) reconstruction. Table 1 summarizes the values of assessment indicators for 174 

the reconstructed images of the testing dataset. Four sets of example images with different 175 

sizes, backgrounds, lighting conditions, shooting angles, and distances are presented in Fig. 176 

5. These indicate that SR reconstruction achieves a superior performance than BI 177 

reconstruction in different situations. 178 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑀𝑀𝑀𝑀𝑀𝑀2/𝑀𝑀𝑀𝑀𝑀𝑀) (8) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
(2𝜇𝜇𝑋𝑋𝜇𝜇𝑌𝑌 + 𝐶𝐶1)(2𝜎𝜎𝑋𝑋𝑋𝑋 + 𝐶𝐶2)

(𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑌𝑌2 + 𝐶𝐶1)(𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2 + 𝐶𝐶2)
 (9) 
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 𝜎𝜎𝑋𝑋𝑋𝑋 =
1

𝑁𝑁 − 1
�(𝑋𝑋𝑖𝑖 − 𝜇𝜇𝑋𝑋)(𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑌𝑌)
𝑁𝑁

𝑖𝑖=1

 (10) 

In Eqs. (8) - (10), 𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum pixel value of the image (defines as  𝑀𝑀𝑀𝑀𝑀𝑀 =179 

255 in this study), 𝑀𝑀𝑀𝑀𝑀𝑀 is the mean square error of image X and image Y;  𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖 are the 180 

luminance intensity of each pixel in image X and image Y; 𝜇𝜇𝑋𝑋 and 𝜇𝜇𝑌𝑌 are the mean luminance 181 

intensity of image X and image Y; 𝜎𝜎𝑋𝑋 and 𝜎𝜎𝑌𝑌 are the standard deviation of the luminance of 182 

image X and image Y; 𝐶𝐶1 and 𝐶𝐶2 are constants (defines as 𝐶𝐶1 = 𝐶𝐶2 = (0.01 ×  255)2 in this 183 

study); and 𝜎𝜎𝑋𝑋𝑋𝑋 is the covariance of image X and image Y. 184 

  

Fig. 5. Visual comparison of BI and SR 

Table 1 Quantitative evaluation of BI and SR 185 

 PSNR（dB） SSIM Correlation coefficient 

SR 29.40 0.933 0.986 

BI 17.76 0.618 0.909 

A position tracking procedure for each ROI, which combined the traditional template 186 

matching approach with the SR technique, was developed as shown in Fig. 6(a). The 187 

procedure consists of the following steps: (1) Select a region with fixed apparent features, i.e. 188 

the region containing an artificial target, as the ROI, and use the template matching method 189 

HR (200×200) LR (25×25) BI (200×200) SR (200×200)

HR (400×400) LR (50×50) BI (400×400) SR (400×400)

HR (400×400) LR (50×50) BI (400×400) SR (400×400)

HR (400×400) LR (50×50) BI (400×400) SR (400×400)
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to track its position (𝑥𝑥𝑎𝑎 ,𝑦𝑦𝑎𝑎); (2) Crop and save the ROI; (3) Reconstruct the ROI using the 190 

SR technique; (4) Select several objects of interest (OOIs) within the ROI and capture their 191 

position using the template matching method to determine the relative coordinates of the 192 

target centroid (𝑥𝑥′𝑏𝑏 , 𝑦𝑦′𝑏𝑏) ; (5) Calculate the accurate coordinates of the target centroid 193 

(𝑥𝑥𝑏𝑏 ,𝑦𝑦𝑏𝑏) by adding the relative coordinates of target centroid and the coordinates of the ROI. 194 

It is noted that the pre-trained SR model can be used for different sizes of ROI, as shown in 195 

Fig. 5. As a large size of ROI results in an increased computation cost, it is recommended to 196 

select an ROI of which the size is slightly larger than the target. 197 

In this study, the corners of the target were chosen as OOIs, as shown in Fig. 6(b). The 198 

accurate coordinate of the target centroid was calculated by adding the coordinate of the ROI 199 

in the global image (𝑥𝑥𝑎𝑎 , 𝑦𝑦𝑎𝑎) and the relative coordinate of the target centroid in the ROI 200 

(𝑥𝑥′𝑏𝑏 , 𝑦𝑦′𝑏𝑏) . The relative coordinate of target centroid was determined by the geometric 201 

operation of the coordinates of OOIs. If the errors of the OOI tracking results are independent 202 

and identically distributed, the use of an increased number of OOIs can lead to improved 203 

accuracy with less error variance. Further discussion on multi-region tracking can be found 204 

in Section 5.2. 205 

 
(a) Position tracking procedure for ROI 

Global tracking
(1) Select and 
track the ROI

(2) Crop and 
save the ROI

(5) Calculate accurate 
coordinate of the ROI

Refined tracking

(3) Reconstruct 
the ROI

(4) Locate OOIs 
in the ROI
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(b) Coordinate calculation 

Fig. 6. Flowchart of the SR target tracking method 

3 THREE-STORY RC STRUCTURE EXPERIMENT 206 

3.1 Experimental program 207 

 The specimen was a 1/2-scale three-story RC building structure. As shown in Fig. 7, it 208 

had a plan dimension of 4.7 m (wall direction) by 3.0 m (frame direction) and a uniform story 209 

height of 2.3 m. Details of the specimen design can be found in Ji et al. [44]. Two seismic 210 

motions, the JMA Kobe and Takatori recorded in the 1995 Kobe earthquake, were selected 211 

for the shaking table input motions. The seismic motions were scaled to four levels: peak 212 

ground acceleration = 0.07, 0.20, 0.40 and 0.62 g. During the tests, a total of six seismic 213 

shakings were applied in both the wall and frame directions: JMA Kobe 0.07g (Case 1), JMA 214 

Kobe 0.20g (Case 2), JMA Kobe 0.40g (Case 3), JMA Kobe 0.62g (Case 4), Takatori 0.40g 215 

(Case 5), Takatori 0.62g (Case 6). For each case, the seismic motion was firstly applied in 216 

the wall direction and then in the frame direction. Before and after each seismic motion 217 

shaking event, the bidirectional white noise was input to the shaking table to induce low-218 

magnitude vibrations of the specimen that were used for system identification. The white 219 

noise had a bandpass frequency of 0.5-50 Hz, a root mean square magnitude of 15 gal and a 220 

duration of 240 s. 221 

ROI SR-ROI Locate OOIs

accurate coordinates: (xb , yb) = (xa+x’b , ya+y’b)

50×50 pixels 400×400 pixels 400×400 pixels

Photo

A (xa , ya)

A (xa , ya) B

A (xa , ya) A (xa , ya)

x’b

y’b
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Three inter-story drift measurement approaches were implemented in the shaking table 222 

tests: displacement meter measurement, acceleration integration measurement and computer 223 

vision-based measurement. A total of 16 accelerometers were installed to measure the 224 

accelerations of each floor and shaking table, and 18 displacement meters were used to 225 

measure the inter-story drifts. Fig. 8 depicts the arrangement of accelerometers and 226 

displacement meters in a typical floor. Video cameras were arranged outside the table to 227 

record the vibrations of the specimen.  228 

  
（a）Schematic drawing （b）Photograph 

Fig. 7. Overview of the specimen 

 
Fig. 8. Arrangement of instrumentation 

3.2 Displacement meter measurement 229 

Two sets of overhanging steel arms were arranged on each floor, among which one group 230 

of steel arms and two displacement meters were arranged as depicted in Fig. 2(b). The 231 

displacement meters used in the tests were laser displacement meters and string 232 

6.9 m
(2.3 m×3)

3 m Frame direction

4.7 m 

Wall direction

Target

a

accelerometer

displacement meter

camera

N
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potentiometers. The laser displacement meters offered a repeat accuracy of 0.2 mm and a 233 

measurement range of 80 mm. The string potentiometers had a repeat accuracy of 0.15 mm 234 

and a measurement range of 75 mm. The steel arms were rigid and securely fixed to the floor 235 

slabs by anchor bolts, with a calculated natural vibration frequency of 312 Hz. This prevented 236 

their vibrations from influencing the displacement meter measurement. The displacement 237 

measurement was recorded at a sampling frequency of 200 Hz. 238 

3.3 Acceleration integration measurement 239 

The accelerometers had a measurement range of ±5 g and frequency bandwidth of 0-240 

2500 Hz. Accelerations were recorded at a sampling frequency of 256 Hz. The following 241 

procedure was employed to calculate the inter-story drifts from the measured acceleration 242 

data. 243 

(1) Remove the pre-event mean accelerometer measurement data. 244 

(2) Use a low-pass filter to remove high-frequency noise from the acceleration data. The 245 

cut-off frequency of this test was designated as 25 Hz considering the structural natural 246 

frequency. 247 

(3) Apply high-pass filtering to the acceleration data to eliminate possible baseline drift, 248 

and integrate the filtered acceleration to obtain the velocity. Next, use high-pass filtering on 249 

the velocity to eliminate the trend error caused by numerical integration [45] and integrate 250 

the filtered velocity to obtain the displacement. A 4-pole acausal Butterworth filter was 251 

utilized in the analysis. As the key parameter, the cutoff frequency was determined from the 252 

peak point of the signal-to-noise ratio (SNR) curve [12], as depicted in Fig. 9. The SNR was 253 

calculated as follows: 254 
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 𝑆𝑆𝑆𝑆𝑆𝑆 = 10 ∙ log10(𝑅𝑅/𝑁𝑁) (11) 

where 𝑅𝑅 is the power of the real signal and 𝑁𝑁 is the power of the noise. In this equation, the 255 

displacement meter measurement results were used as the real signal, and the noise was 256 

defined as the error between the acceleration integration results and the displacement meter 257 

measurement. The acceleration integration results were resampled to 200 Hz (i.e., the 258 

sampling frequency of displacement meters) in the noise calculation. 259 

 

Fig. 9. Optimal cutoff frequency 

3.4 Computer vision-based measurement 260 

Experimental videos were taken using a Nikon D750 camera with an AF-S NIKKOR 24-261 

120 mm lens. This is a consumer-grade digital camera equipped with a standard zoom lens 262 

and a CMOS (complementary metal oxide semiconductor) image sensor with a size of 35.9263 

×24 mm. The optical axis of the camera was configured to be as perpendicular to the front 264 

surface of the specimen as possible. The shooting distance (i.e., the distance between the 265 

camera and the test specimen) was not measured. The experimental videos had a frame rate 266 

of 50 Hz with an image resolution of 1920 × 1080 pixels. Artificial targets were affixed to 267 

the surface of the frame beams and foundation beam of the specimen. 268 

Lens distortion correction is a necessary step when processing photos that are shot using 269 

a wide-angle lens. As the videos were taken using an ordinary lens, and only the in-plane 270 
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motion of the structure was considered, the method of calculating the scale factor at each 271 

floor was adopted to simplify the distortion correction process [46]. The scale factor, which 272 

converts pixels to engineering units such as millimeters, was calculated according to Eq. (12), 273 

utilizing the beams of each floor as the object. The scale factors at different heights in the 274 

photos were calculated, yielding values of approximately 4.5 mm/pixel. This means that the 275 

minimum resolution of the template matching method was 4.5 mm. As the SR method in this 276 

study can transform one LR image into an SR image with the size enlarged by 8 times, it 277 

resulted in an improved minimum resolution of 4.5 / 8 = 0.56 mm. It should be noted that the 278 

scale factor varies for different sizes of the observed object and camera resolutions. After 279 

obtaining the coordinate changes of the target in the videos, the actual displacement was 280 

calculated as follows: 281 

 𝛼𝛼 =
𝐷𝐷
𝑑𝑑

 (12) 

 ∆𝑥𝑥 = 𝜆𝜆𝜆𝜆 (13) 

In Eqs. (12) and (13), 𝛼𝛼 is the scale factor; 𝐷𝐷 is the engineering length of the selected 282 

object; 𝑑𝑑 is the image pixels of the selected object; ∆𝑥𝑥 is the actual displacement of the ROI; 283 

and 𝜆𝜆 is the coordinate changes of the ROI in the video. 284 

4 EXPERIMENTAL RESULTS 285 

In this section, the effect of the displacement meter data correction method was evaluated, 286 

and the influence of floor slab rotation on structural displacement measurement was 287 

quantified and eliminated. The results of acceleration integration measurement and computer 288 

vision-based techniques were evaluated for the six seismic loading cases (Case 1 - 6) and 289 

four white noise excitation cases in the frame direction. To evaluate the measurement 290 
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accuracy, two indicators were applied: SNR and root mean square error (RMSE) which 291 

reflect the relative error rate and the absolute error, respectively.  292 

4.1 Displacement meter measurement results 293 

Fig. 10 presents the power spectrum of the measured data of the second story inter-story 294 

drift response for seismic Case 3. As indicated, the corrected data had an increased level of 295 

high-frequency noise because the calculation in Eqs. (1) - (6) amplified the noise. A detailed 296 

discussion of noise amplification can be found in Section 5.1. To suppress the adverse 297 

influence of the high-frequency noise, the measured inter-story drift data was filtered using 298 

a low-pass filter with a cutoff frequency of 5 Hz. 299 

   

Fig. 10. Power spectrum of displacement meter measurement data 

Fig. 11 presents the time history of the measured inter-story drift of the second story for 300 

seismic Case 3. Comparison between the original and corrected data reveals that floor slab 301 

rotation had a non-negligible influence on the inter-story drift measurement. In particular, the 302 

floor slab rotation exerted a greater influence on the measurement in the wall direction with 303 

an RMSE of 2.46 mm which was 2.26 times the RMSE in the frame direction. This is because 304 

the shear walls that were characterized with a flexure-type deformation mode could lead to 305 

larger floor slab rotation than the frames that were characterized with the shear-type 306 
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deformation mode. Finite element analysis of the test specimen using the SAP2000 program 307 

indicated that floor slab rotation in the wall direction was approximately 2.0 times that in the 308 

frame direction at the identical lateral top displacement.  309 

  
(a) Wall direction (b) Frame direction 

Fig. 11. Displacement meter measurement results 

The measured peak inter-story drift ratio (IDR) envelops are depicted in Fig. 12 (a) and 310 

(b). Note that the measured data was incomplete for seismic Case 6, as the maximum inter-311 

story drifts in some stories were beyond the measurement range of the displacement meters. 312 

The discrepancy between the original and corrected data was regarded as the error induced 313 

by neglecting the floor slab rotation effect. Fig. 12 (c) and (d) shows the maximum errors of 314 

the peak inter-story drifts in different stories for a variety of loading cases. It is indicated that 315 

the drift errors induced by floor rotation generally increased with an increase of the inter-316 

story drift levels. In addition, the drift errors in the second and third stories were obviously 317 

higher than those in the first story, which might be due to the local rotation angle of the floor 318 

would cumulatively increase along with the floor height. In the wall direction, the maximum 319 

error of inter-story drift was 14.46 mm (error/peak drift = 20.09%) and the average error was 320 

4.54 mm. In the frame direction, the maximum and average errors were 5.36 mm (error/peak 321 

drift = 9.15%) and 1.94 mm, respectively. In the following subsections, the corrected 322 

displacement meter measurement data is used as the true measure of inter-story drifts to 323 
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facilitate comparison with the results of acceleration integration measurement and computer 324 

vision-based measurement. 325 

 
(a) Peak inter-story drift ratio in the wall direction 

 
(b) Peak inter-story drift ratio in the frame direction 

  
(c) Maximum error of inter-story drift in 

the wall direction 

(d) Maximum error of inter-story drift in 

the frame direction 

Fig. 12. Peak inter-story drift results measured by displacement meter 

4.2 Acceleration integration measurement results 326 

The comparison between the acceleration integration measurement results and the 327 
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corrected displacement meter measurement results of seismic Case 3 is shown in Fig. 13. In 328 

this figure, the discrepancy between acceleration integration data relative to the displacement 329 

meter data is referred to as the error. Errors typically occurred when the structure underwent 330 

nonlinear responses. For this loading case, the maximum error was 4.5 mm, and was observed 331 

at the bottom story. It is noted that residual drifts were removed in the acceleration integration 332 

results due to the data being filtered by the high-pass filter. In general, the acceleration 333 

integration measurements exhibited good performance, with a SNR of 15.94 dB and RMSE 334 

of 1.41 mm for seismic Case 3. 335 

 
 

(a) Inter-story drift (b) Error 

Fig. 13. Acceleration integration measurement results 

The errors in the acceleration integration results are related to data processing methods. 336 

Because a high-pass filter was used in this study, the integrated results were not able to 337 

capture the structural responses at low frequencies which was removed by the filter. This was 338 

confirmed by the analysis of the data, as shown in Fig. 13(b). In this figure, the red dash line 339 

represents the low-frequency components of displacement meter measurement which were 340 
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obtained using a low-pass filter with a cutoff frequency of 0.4 Hz (i.e., the cutoff frequency 341 

of the high-pass filter used in acceleration integration processing). The blue solid line 342 

represents the error of acceleration integration results. The good correlation between these 343 

two lines indicates that the error was primarily induced by filtering the low-frequency 344 

components in the acceleration integration. Comparison of power spectrum between the 345 

acceleration integration results and the displacement meter data shown in Fig.14 also 346 

confirms the above conclusions. 347 

 
Fig. 14. Power spectrum of acceleration integration results 

Fig. 15 compares the acceleration integration results and displacement meter 348 

measurements for a white noise loading case. The acceleration integration results matched 349 

displacement meter measurements well, with the SNR and RMSE values reaching 18.25 dB 350 

and 0.15 mm, respectively. This is because the response of the structure under the white noise 351 

excitation was small (less than 0.2% drift) and the structure remained in elastic without 352 

nonlinear response and residual drifts. 353 
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(a) Inter-story drift (b) Zoomed-in view 

Fig. 15. Acceleration integration measurement results under white noise excitation 

4.3 Computer vision-based measurement results 354 

Fig. 16 illustrates the computer vision-based measurement results of seismic Case 3, in 355 

which both the traditional template matching method and the proposed SR target tracking 356 

method were compared. While both vision-based measurements appeared to correlate with 357 

the displacement meter measurement results, a zoomed-in view indicates that the 358 

conventional template matching measurement curve was saw-toothed. This is because the 359 

scale factor of the image is 4.5 mm/pixel which led to a minimum resolution for the 360 

conventional method of 4.5 mm. However, the proposed SR method can track the sub-pixel 361 

target displacement, and thus exhibited improved measurement accuracy. Compared to 362 

conventional template matching tracking, the SR target tracking increased the SNR by 68% 363 

and decreased the RMSE by 63%. 364 
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(a) Inter-story drift (b) Zoomed-in view 

Fig. 16. Computer vision-based measurement results 

 365 

 
 

(a) Inter-story drift (b) Zoomed-in view 

Fig. 17. Computer vision-based measurement results under white noise excitation 

The white noise vibration data, as depicted in Fig. 17, clearly demonstrates the 366 
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measure the drift history. Due to the capability of sub-pixel target tracking, the developed SR 370 

method can accurately measure such small displacement responses. The SNR of the SR 371 

measurement results reached 12.74 dB, and the RMSE was 0.29 mm for the white noise case. 372 

The aforementioned vision-based analysis was run on a computer with Intel i7-6850 373 

CPU, NVIDIA RTX 3090Ti GPU and 32 Gb RAM. The processing of conventional template 374 

matching was simple and it cost 0.19 s for one picture. The SR target tracking were divided 375 

into three steps: conventional template matching, the SR reconstruction of ROIs and multi-376 

region tracking, which took 0.19, 0.21, and 0.71s respectively for analysis of one picture.  377 

GPU acceleration was implemented only in the step of SR reconstruction of ROIs. 378 

4.4 Comparison of different measurement methods 379 

Fig. 18 presents the SNR of the measurement results using the acceleration integration 380 

method and vision-based SR method for the six seismic loading cases and four white noise 381 

excitation cases. For the seismic loading cases, the SNR of acceleration integration results 382 

generally decreased along with an increase in the structural nonlinear responses, as an 383 

increased nonlinear response would lead to a rise in low-frequency responses and residual 384 

drifts. From JMA Kobe-0.07g shaking to Takatori-0.62g shaking, the SNR value of drifts 385 

measured by the acceleration integration decreased from 18.46 dB to 8.36 dB. It is noted that 386 

the procedure of acceleration integration (as detailed in subsection 3.3) needs the calibration 387 

with displacement meter measurement to determine the cutoff frequency. Without such 388 

information, the cutoff frequency would be most probably set by engineer judgement which 389 

may lead to an increased error. However, the vision-based SR method showed increasing 390 

SNR values along with an increase in structural responses ranging from 18.26 dB to 26.26 391 
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dB. This is because the measurement error was almost identical for all cases as the image 392 

resolution was identical. Therefore, the increase in responses resulted in the increase in SNR. 393 

For the white noise cases, the acceleration integration method maintained a stable and good 394 

accuracy with an average SNR of 17.85 dB, and the vision-based SR method had an average 395 

SNR of 12.48 dB. 396 

  
(a) SNR of seismic cases (b) SNR of white noise cases 

Fig. 18. Signal quality comparison of different measurement methods 

Fig. 19(a) depicts the peak inter-story drifts measured by different methods for the 397 

seismic loading cases. Fig. 19(b) indicates that the error of the acceleration integration results 398 

increased according to the structural displacement responses. The acceleration integration 399 

measurement results had an average error of 2.61 mm and a maximum error of 10.16 mm. 400 

As indicated in Fig. 19(c), the SR method provided highly accurate drift measurements with 401 

an average and maximum error of 0.80 mm and 3.73 mm, respectively. 402 

  
(a) Inter-story drift ratio 

1 2 3 4 5 6

Case

0

5

10

15

20

25

SN
R

 (d
B)

SR method

Acceleration integration

1 2 3 4

Case

0

5

10

15

20

25

SN
R

 (d
B)

SR method

Acceleration integration

 

 

 

 

Disp. meter Acceleration integration SR method

 

 

 

 

 

 

 

 

0

IDR (%)

1

2

3

Fl
oo

r

case 1

-1 0 1

IDR (%)

1

2

3

case 2

-1 0 1

IDR (%)

1

2

3

case 3

-2 0 2

IDR (%)

1

2

3

case 4

-2 0 2

IDR (%)

1

2

3

case 5

-4 -2 0 2 4

IDR (%)

1

2

3

case 6

-0.2 0 0.2

IDR (%)

 

 

 

 

 

 

 

 

 

 

 



27 
 

  
(b) Inter-story drift from acceleration 

integration method 

(c) Inter-story drift from SR method 

Fig. 19. Inter-story drift results of different methods 

Residual drifts are an essential measure for evaluating the recoverability of a structure 403 

after an earthquake [47]. As illustrated in Fig. 20, the vision-based SR method exhibited 404 

excellent performance in measuring the residual drifts of the structure after seismic shaking. 405 

However, the acceleration integration method cannot capture the residual drifts of the 406 

structure due to use of high-pass filter in data processing. 407 

 
Fig. 20. Residual drift measurement results 

5 DISCUSSIONS 408 

5.1 Noise amplification of displacement meter measurement 409 

The displacement meter data correction method could eliminate the floor slab rotation 410 

influence while the correction process may amplify the measurement noise (Fig. 10). 411 

Assuming that the measurement noise of each displacement meter is independent and 412 

-100 -50 0 50 100

Disp. meter measurement (mm)

-100

-50

0

50

100

Ac
ce

le
ra

tio
n 

in
te

gr
at

io
n

 m
ea

su
re

m
en

t (
m

m
)

Acceleration integration

average error：2.61mm
-100 -50 0 50 100

Disp. meter measurement (mm)

-100

-50

0

50

100

SR
 m

et
ho

d 
m

ea
su

re
m

en
t (

m
m

)

SR method

average error：0.80mm

-10 -5 0 5 10

Disp. meter measurement (mm)

-10

-5

0

5

10

   
 O

th
er

 m
et

ho
d

 m
ea

su
re

m
en

t (
m

m
)

Acceleration integration

SR method



28 
 

identically distributed, the measurement result of each displacement meter can be defined as 413 

follows: 414 

 𝑑𝑑 = 𝐴𝐴 + 𝑁𝑁𝑑𝑑 (14) 

where 𝑑𝑑 is the measurement data of the displacement meter, 𝐴𝐴 is the actual displacement, and 415 

𝑁𝑁𝑑𝑑 is the measurement noise, which follows a distribution with an expected value of zero and 416 

the variance of 𝜎𝜎2. The variance of 𝐷𝐷𝑖𝑖1, 𝐷𝐷𝑖𝑖2, 𝐷𝐷𝑖𝑖3, 𝐷𝐷𝑓𝑓 was calculated based on Eqs. (1) – (6). 417 

The results are shown in Eqs. (15) - (18), which quantified the effects of noise amplification. 418 

For the second story inter-story drift response, the variance of corrected inter-story drift 𝐷𝐷𝑖𝑖𝑖𝑖 419 

was 80.6 times the variance of the original inter-story drift 𝐷𝐷𝑖𝑖2. In the low-frequency region, 420 

the structural response was significantly higher than the measurement noise, and thus, the 421 

noise amplification effect was not obvious. However, in the high-frequency region, noises 422 

significantly contributed to the measurement data, and hence the noise amplification effect 423 

was noticeable, as indicated in Fig. 10. Calculations using Eq. (18) indicates that the 424 

amplified noise had an increase of the power spectrum by 19.1 dB, which is consistent with 425 

the observations in Fig. 10. To control the influence of noise amplification, it is recommended 426 

to select ℎ𝑖𝑖 greater than  0.1𝐻𝐻. 427 

 
𝜎𝜎2(𝐷𝐷𝑖𝑖1) = �

0                                  , 𝑖𝑖 = 1

� 2(𝐻𝐻𝑖𝑖 ℎ𝑘𝑘⁄ )2𝜎𝜎2,
𝑖𝑖−1

𝑘𝑘=1
𝑖𝑖 > 1 

(15) 

 𝜎𝜎2(𝐷𝐷𝑖𝑖2) = 𝜎𝜎2 2⁄  (16) 

 𝜎𝜎2(𝐷𝐷𝑖𝑖3) = 2(𝐿𝐿𝑖𝑖 ℎ𝑖𝑖⁄ )2𝜎𝜎2 (17) 

 𝜎𝜎2(𝐷𝐷𝑖𝑖𝑓𝑓) = 𝜎𝜎2(𝐷𝐷𝑖𝑖1) + (𝐿𝐿𝑖𝑖 ℎ𝑖𝑖⁄ + 0.5)2𝜎𝜎2 + (𝐿𝐿𝑖𝑖 ℎ𝑖𝑖⁄ − 0.5)2𝜎𝜎2 (18) 

5.2 Multi-region tracking 428 

Target selection is crucial for the cross-correlation template matching approach, which 429 

calculates the cross-correlation between the target and the image to determine the target 430 
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position. In the process of template matching, one entire stiff region on the structure surface 431 

is commonly chosen as the target. This is performed not only for convenience but also to 432 

match a greater number of pixels for more stable results. Nevertheless, the minimum 433 

resolution for tracking a single region is generally one pixel which indicates that the tracking 434 

error is at the pixel level. To minimize the error, more regions can be matched to achieve 435 

smaller resolution and error variance, assuming that the tracking error is independent of the 436 

size of the matched target. 437 

To explore whether multi-region matching can improve the matching accuracy, single-438 

region tracking and multi-region tracking were employed to obtain the position of targets in 439 

the SR images, and the quality of the obtained inter-story drift was compared, as shown in 440 

Fig. 21. The multi-region tracking performed better in tracking white noise vibrations, with 441 

an average SNR gain of 15.0% (1.67 dB) and a reduction in RMSE of 13.9% (0.043 mm), 442 

while there was no remarkable difference between the two tracking approaches for seismic 443 

vibrations. 444 

 
(a) Matching results 

  
(b) SNR of seismic Cases (c) SNR of white noise Cases 

Fig. 21. Comparison of single-region and multi-region tracking 
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5.3 Identification of structural modal parameters 445 

While system identification is commonly based on acceleration data, accurately 446 

measured dynamic displacement responses from the vision-based method may also serve as 447 

useful data. Because the traditional vision-based measurement is often constrained by the low 448 

resolution of the global-view video of a large-scale shaking table test specimen, it cannot 449 

provide accurate displacement data for system identification. The novel SR target tracking 450 

method may overcome this resolution restraint and achieve precise measurements of small-451 

magnitude responses of white noise vibrations.  452 

The autoregressive (AR) with exogenous term (ARX) method [48 ] was adopted for 453 

system identification from the vision-based SR measurement data of displacement responses 454 

for the white noise excitation Case 2. The displacement of the bottom floor was taken as the 455 

input, and the displacement responses at the first to third floors as the output. Fig. 22 displays 456 

the identified dynamic properties, including the first three natural vibration frequencies, 457 

damping ratios and corresponding mode shapes in the frame direction. The dynamic 458 

properties identified from the acceleration data in this white noise excitation case were also 459 

included for comparison. As indicated in the figure, the identified frequencies and mode 460 

shapes from two sets of data correlated well, with a frequency difference of less than 2% and 461 

a modal assurance criterion (MAC) of mode shapes greater than 0.98. The damping ratios of 462 

the first two modes were also accurately identified from the SR measurement data, while that 463 

of the third mode was larger than the value identified from the acceleration data. This is 464 

because the high-mode effect made significantly less contribution to the displacement 465 

responses than the acceleration responses. Therefore, the SNR of SR measured displacement 466 
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at the frequency band of the third mode was lower than that of the acceleration recorded by 467 

accelerometers, which resulted in less accuracy in the damping identification of the third 468 

mode from the SR measurement data. Nevertheless, the SR measurement data generated 469 

satisfactory results for system identification. 470 

 
(a) Stabilization diagram 

 
(b) Dynamic properties 

Fig. 22. Identification of structural modal parameters  
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and a novel object tracking method based on super-resolution (SR) image reconstruction was 476 

developed to realize stable sub-pixel displacement measurement. Shaking table tests of a 477 

large-scale three-story RC building structure were used as a case study to evaluate the 478 

accuracy of these measurement approaches. The major conclusions derived from this study 479 

are as follows: 480 

(1) The floor slab rotation affected the accuracy of the measured inter-story drift data of 481 

displacement meters set at the overhanging steel arms between adjacent floors. This resulted 482 

in errors of approximately 20% in measuring inter-story drift for the shaking table tests in 483 

this study. By setting the overhanging steel arms above and beneath a floor slab in the same 484 

position, this proposed arrangement of displacement meters and associated data correction 485 

method effectively eliminated the influence of floor slab rotation. 486 

(2) For the acceleration integration method, use of high-pass filtering can remove 487 

baseline drift while resulting in the loss of residual displacement and errors of inter-story 488 

drifts in the low-frequency region. The test data indicates that the acceleration integration 489 

method generated increased errors in line with the increase in structural nonlinear responses, 490 

which reached 10.16 mm (error/peak = 14%) for the shaking table tests in this study. 491 

(3) The developed SR target tracking method combines the deep learning-based SR 492 

technique with the traditional cross-correlation template matching algorithm. The application 493 

of the SR method in the RC structure shaking table tests indicated that this method overcame 494 

the limitation of video resolution and achieved a stable sub-pixel displacement measurement. 495 

In a seismic loading case, the SR method improved the SNR of the drift measurement by 68% 496 

and reduced RMSE by 63%, compared with the traditional template matching method. 497 
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(4) The SR target tracking method provided precise measurements of small-magnitude 498 

displacement responses of the test structure under white noise excitations. From these 499 

displacement data, the structural modal parameters were extracted using system identification. 500 

The identified modal parameters closely matched those extracted from acceleration data, with 501 

a frequency error less than 2% and a MAC of mode shapes greater than 0.98.  502 
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